ECS 455 Chapter 1

Introduction & Review

1.3 Wireless Channel (Part 1)
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Wireless Channel

(D e Large-scale propagation effects

@ Path loss
Shadowing

order of the signal Wavelength.
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Typically frequency independent ;éa)
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~illse  destructive addition of multipath signal ]

cl:dcunqul Ql';*‘%Ce
components.
etber

~:dtem © Occur over very short distances, on the

Path Loss Alone
.......... Shadowing and Path Loss

K(dB) k#=5\. . .
v Multipath, Shadowing, and Path Loss

recél

~3x10° [m/s]

f=3GHz=> A=0.1m

/




e

(¢ Path loss

e Caused by

dissipation of the power radiated by the transmitter

effects of the propagation channel

® Models generally assume that it is the same at a given

transmit-receive distance. [
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® Variation occurs over large distances (100-1000 m)
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L Averaged over any random variations due to shadowing
r,1d8] = — P [J6]
* Free-Space Path Loss:
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P falls off inversely proportional to the square of the distance d
between the Tx and Rx antennas.

For other signal propagation models, P, falls oft more quickly relative

to d.
* Simplified Path Loss Model: P 4.V  wk(d y
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Friss Equation

® One of the most fundamen
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® More power is lost at higher frequencies.

2.4 GH 5 GHz 60 GHz
6.4 dB loss 21.6 dB loss
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e Some of these losses can be offset by reducing the maximum
operating range. The remaining loss must be cornpensated for
by increasing the antenna gain.
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Path Loss Models

* Analytical models

Maxwell’s equations % pro hibibive

Ray tracing

* Empirical models
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Piecewise Linear (Multi-Slope) Model
® Tradeoft: Simplified Path Loss Model
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Indoor Attenuation Factors
® Building penetration loss: 8-20 dB (better if behind windows)

¢ Attenuation between floors

@ 900 MHz
10-20 dB when the Tx and Rx are separated by a single floor
6-10 dB per tloor for the next three subsequent floors

A few dB per floor for more than four floors

Typically worse at higher frequency.

® Attenuation across floors

Partition Type Partition Loss in dB
Cloth Partition 1.4
Double Plasterboard Wall 3.4
Foil Insulation 3.9
Concrete wall 13
Aluminum Siding 20.4
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6 All Metal 26 [Goldsmith, 2005, Sec. 2.5.5]




Simplified Path Loss Model

P K(&T
P d

® K is a unitless constant which depends on

the antenna characteristics and

the average channel attenuation

1 2
( ) for frcc-spacc path gain at distance d,, assuming

477:d0
omnidirectional antennas

* d,is a reference distance for the antenna far-field

Typically 1-10 m indoors and 10-100 m outdoors.

* yis the path loss exponent.

Captures the essence of
signal propagation without
resorting to complicated
path loss models, which are
only approximations to the

real channel anyway!

(Near-field has scattering

phenomena.)




Path Loss Exponent x

® 2 in free-space model

® 4 in two-ray model

[Goldsmith, 2005, eq. 2.17]

e Cellular: 3.5 —-4.5

[Myung and Goodman, 2008 , p 17]

Environment 7 range
Urban macrocells 3.7-6.5
Urban microcells 2.7-3.5
Office Building (same floor) 1.6-3.5
Office Building (multiple floors) 2-6
Store 1.8-2.2
Factory 1.6-3.3
Home 3

* Larger @ higher freq.
* Lower (@ higher antenna heights
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[Goldsmith, 2005, Fig 2.1]
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- Shadowing (or Shadow Fading)

* Caused by obstacles (large objects such as buildings and hills)

between the transmitter and receiver.

Think: cloud blocking sunlight

® Variation occurs over distances proportional to the length of the
obstructing object (10-100 m in outdoor environments and less in
indoor environments).

* Attenuate signal power through absorption, reflection, scattering,
and diffraction.

*

[Myung and Goodman, 2008, Fig 2.1]
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Contours of Constant Received Power

Path loss and
random shadowing

Path loss and
average shadowing

[Goldsmith, 2005, Fig 2.10]
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e Random variation due to blockage from objects in the s1gnal
path and changes in reﬂecting surfaces and scattering objects

— random variations of the received power at a given

dlstance 4_13dB with higher values in urban
/ areas and lower ones in flat
P rural environments.
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® This model has been confirmed empirically to accurately
model the variation in received power in both outdoor and

indoor radio propagation environments.




dBm

e The range of RF power that must be measured in cellular phones
and wireless data transmission equipment varies from

hundreds of watts in base station transmitters to
picowatts in receivers.
® For calculations to be made, all powers must be expressed in the
same power units, which is usually milliwatts.

A transmitter power of 100 W is therefore expressed as 100,000mW.
A received power level of 1 pW is therefore expressed as

0.00000000TmW.

o Making power calculations using decimal arithmetic is therefore
complicated.

* To solve this problem, the dBm system is used




[Scott and Frobenius, 2008, Fig 1.1]

Range of RF Power in Watts and dBm

1 megawatt =——— 90dBm
—1 80
e 70
1 kilowatt =t 60dBm
P —— 50
P [W] = 1010g10m [dBm] 1 40
m 1watt =———— 30dBm
100 milliwatt - 20 +— 20dBm
— 10
Reference Level 1 milliwatt =—4— 0dBm

100 o<J
— =10 10 Iaj1o 0

—_ 20 ‘l/ﬁ

1 microwatt ——onu —
30 dBm - .0 el £

Transmitter Power

Lowest Measureable Signal 1 nanowatt ———— —60dBm

Received Signal 1 picowatt =——t—— —90dBm

Noise 1 femtowatt == —120dBm [Smillie, 1999, P 11]/
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Doppler Shift: 1D Move

* At distance d = 0, suppose we have

A, cos(27 ft+¢)

e At distance r, we have o) Time to travel a distance of r
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* If moving, r becomes r(z). A eos (277 ( ) ) >
* If moving away at a constant velocity v, thenr (t)=r,+vt
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Doppler Shift: With angle

Rx speed = v(t). At time ¢, cover distance /(t IV
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Doppler Shift: Approximation

r(t)=d—¢(t)coso
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For typical vehicle speeds (75 Km/hr) and frequencies

(around 1 GHz), it is on the order of 100 Hz 7o
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[Goldsmith, 2005, Fig 2.2] /




Big Picture

Transmission impairments in cellular systems

Physics of radio propagation v"Attenuation (Path Loss)
/"Shadowing

“"Doppler shift
Inter-symbol interference (ISI)
Flat fading
Frequency-selective fading

Extraneous signals Co-channel interference
Adjacent channel interference
Impulse noise
White noise

Transmitting and receiving equipment White noise
Nonlinear distortion
Frequency and phase offset
Timing errors

[Myung and Goodman, 2008, Table 2. 1]/




